Gauss-Kronrod Integration Rules for Cauchy Principal Value Integrals

نویسندگان

  • Philip Rabinowitz
  • PHILIP RABINOWITZ
چکیده

Kronrod extensions to two classes of Gauss and Lobatto integration rules for the evaluation of Cauchy principal value integrals are derived. Since in one frequently occurring case, the Kronrod extension involves evaluating the derivative of the integrand, a new extension is introduced using n + 2 points which requires only values of the integrand. However, this new rule does not exist for all n. and when it does, several significant figures are lost in its use.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quadrature rules for rational functions

It is shown how recent ideas on rational Gauss-type quadrature rules can be extended to Gauss-Kronrod, Gauss-Turr an, and Cauchy principal value quadrature rules. Numerical examples illustrate the advantages in accuracy thus achievable. 0. Introduction The idea of constructing quadrature rules that are exact for rational functions with prescribed poles, rather than for polynomials, has received...

متن کامل

Gauss Type Quadrature Rules for Cauchy Principal Value Integrals

Two quadrature rules for the approximate evaluation of Cauchy principal value integrals, with nodes at the zeros of appropriate orthogonal polynomials, are discussed. An expression for the truncation error, in terms of higher order derivatives, is given for each rule. In addition, two theorems, containing sufficient conditions for the convergence of the sequence of quadrature rules to the integ...

متن کامل

Evaluation of Singular Integrals by Hyperbolic Tangent Based Transformations

We employ a hyperbolic tangent function to construct nonlinear transformations which are useful in numerical evaluation of weakly singular integrals and Cauchy principal value integrals. Results of numerical implementation based on the standard Gauss quadrature rule show that the present transformations are available for the singular integrals and, in some cases, give much better approximations...

متن کامل

TWO LOW-ORDER METHODS FOR THE NUMERICAL EVALUATION OF CAUCHY PRINCIPAL VSlLUE INTEGRALS OF OSCILLATORY KIND

In this paper, we develop two piecewise polynomial methods for the numerical evaluation of Cauchy Principal Value integrals of oscillatory kind. The two piecewisepolynomial quadratures are compact, easy to implement, and are numerically stable. Two numerical examples are presented to illustrate the two rules developed, The convergence of the two schemes is proved and some error bounds obtai...

متن کامل

Numerical Evaluation of Cauchy Principal Value Integrals with Singular Integrands

Convergence results are proved for sequences of interpolatory integration rules for Cauchy principal value integrals of the form -l k(x)(f(x)/(x-X))dx, -1<A<1, -i when f(x) is singular at a point { / À and the singularity is ignored or avoided. /:'

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010